The complete removal of cohesin from chromosome arms depends on separase.

نویسندگان

  • Masato Nakajima
  • Kazuki Kumada
  • Katsuyoshi Hatakeyama
  • Tetsuo Noda
  • Jan-Michael Peters
  • Toru Hirota
چکیده

Cohesin needs to be removed from chromosomes to allow sister chromatid separation in mitosis. In vertebrates, two pathways contribute to this process. The prophase pathway, which requires phosphorylation of the cohesin subunit SA2 and a cohesin-binding protein, called Wapl, removes the bulk of cohesin from the chromosome arms in early mitosis and allows the resolution of the chromosome arms. At anaphase onset, the protease separase removes centromere-enriched cohesin by proteolytic cleavage of another cohesin subunit, Scc1 (Rad21, Mcd1), which allows the separation of sister chromatids. When anaphase onset is delayed by the spindle-assembly checkpoint, the complete removal of cohesin from chromosome arms but not from centromeres generates typical X- or V-shaped chromosomes. Here, we found that cohesion between chromosome arms is preserved if mitosis is arrested with the proteasome inhibitor MG132. This arm cohesion depends on cohesin complexes that are protected by the shugoshin protein Sgo1, which appears to be distributed on chromosome arms as well as on centromeres in early mitosis. In cells lacking separase or expressing non-cleavable Scc1, arm cohesion was not efficiently removed during nocodazole arrest. Our observations suggest that a fraction of arm cohesin is protected by Sgo1, which prevents cohesin from being removed by the prophase pathway, and that separase is partly activated in nocodazole-arrested cells and removes the arm cohesin protected by Sgo1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Sister Chromatid Cohesion between Chromosome Arms

Sister chromatid separation in anaphase depends on the removal of cohesin complexes from chromosomes. In vertebrates, the bulk of cohesin is already removed from chromosome arms during prophase and prometaphase, whereas cohesin remains at centromeres until metaphase, when cohesin is cleaved by the protease separase. In unperturbed mitoses, arm cohesion nevertheless persists throughout metaphase...

متن کامل

Cohesin Removal along the Chromosome Arms during the First Meiotic Division Depends on a NEK1-PP1γ-WAPL Axis in the Mouse.

Mammalian NIMA-like kinase-1 (NEK1) is a dual-specificity kinase highly expressed in mouse germ cells during prophase I of meiosis. Loss of NEK1 induces retention of cohesin on chromosomes at meiotic prophase I. Timely deposition and removal of cohesin is essential for accurate chromosome segregation. Two processes regulate cohesin removal: a non-proteolytic mechanism involving WAPL, sororin, a...

متن کامل

Smc5-Smc6-dependent removal of cohesin from mitotic chromosomes.

The function of the essential cohesin-related Smc5-Smc6 complex has remained elusive, though hypomorphic mutants have defects late in recombination, in checkpoint maintenance, and in chromosome segregation. Recombination and checkpoints are not essential for viability, and Smc5-Smc6-null mutants die in lethal mitoses. This suggests that the chromosome segregation defects may be the source of le...

متن کامل

Resolution of Chiasmata in Oocytes Requires Separase-Mediated Proteolysis

In yeast, resolution of chiasmata in meiosis I requires proteolytic cleavage along chromosome arms of cohesin's Rec8 subunit by separase. Since activation of separase by the anaphase-promoting complex (APC/C) is supposedly not required for meiosis I in Xenopus oocytes, it has been suggested that animal cells might resolve chiasmata by a separase-independent mechanism related to the so-called "p...

متن کامل

The PP2A Inhibitor I2PP2A Is Essential for Sister Chromatid Segregation in Oocyte Meiosis II

Haploid gametes are generated through two consecutive meiotic divisions, with the segregation of chromosome pairs in meiosis I and sister chromatids in meiosis II. Separase-mediated stepwise removal of cohesion, first from chromosome arms and later from the centromere region, is a prerequisite for maintaining sister chromatids together until their separation in meiosis II [1]. In all model orga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 120 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2007